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Abstract. The quantum problem oftwo particles in a small region ofdimensions comparable 
to those of an existing background interaction is examined. To this purpose, one uses the 
result that quantum phenomena in the Euclidean formulation of the theory are due to a 
stochastic spacetime background interaction, whose essence is the time derivative of the 
Wiener process. The problems of calculating both the transition probability and the path 
integral for that system are then solved. The specific interaction taking place in this c a e  
is likely to play an important role in the quantum description of nucleons. 

It is well known (KaE 1957, Migdal 1986, Beilinson 1964, Nelson 1964) that there is 
a close relationship between Brownian motion and quantum mechanics. In this sense 
the solution of the time-dependent Schrodinger equation 

can be obtained from Bloch equation 

through analytic continuation of Z(x ,  t ) ,  relative to variable t, up to the imaginary 
axis. Formally, it means the substitution of t by it and thus one gets the transition 
Z(x ,  i t )  = $(q t ) .  

Let us consider a system of Langevine stochastic equations 

where pj is the j t h  component of Wiener's n-dimensional process. The Fokker-Planck 
equation for this system has the form 

The fundamental solution of this equation, the transition probability density 
W(x, ,  0; x, 1) .  can be obtained from (3) by substitution of variables (Gelfand 1961, 
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Migdal 1986) in Wiener's integral, as 

A A Beilinson and E P Leal 

W(X0, 0; 5 0 

' dx,(r) ... dXn(T) 
x!!o (./ZFy (5 )  

where the integrals are calculated with respect to all the continuum paths with fixed 
extremities. Separating the total derivative dS/dt in (5), one obtains the so-called 
factorization theorem 

e2s(*.r) 

W ( x o , 0 ; x , t ) = - Z ( x o , 0 ; 5 f )  (6) 

where 

is the Wiener measure (Gelfand and Vilenkin 1961) and dX(7) =dx1(7). . . dx.(r). 
Performing the analytic continuation with respect to time f ,  Z ( x o ,  0; x, t )  becomes the 
solution of the Schrodinger equation for the following Hamiltonian: 

1 J2 
4 Jx' 

fi=---+ V(x). 

In this case (7) must be considered as the Feynman's path integral expression for that 
solution. Equation (7) is KaE's formula for a potential energy 

By substituting (6) in (4) one obtains 

Equation (11) shows that Z(x , ,O;x , t )  satisfies Bloch equation (2) with fi the 
Hamiltonian given by (9) (Beilinson 1982, Beilinson 1979, Glim and Jaffe 1983). 
Finally, the function exp[2S(x, t ) ]  in (6) satisfies the corresponding time-reversed 
Bloch equation 

(12) 

Therefore the stochastic equation (3) can be derived from a concrete solution of (12). 
Since the potential energy given in equation (10) is at the lowest level, the presence 

of the potential V(x) in the Hamiltonian makes the ground-state wavefunction vanish 
(Beilinson 1979, 1982, Glimm and Jaffe 1983). Consequently, for each Hamiltonian 

J 
Jt ). fi ezs("t) = - (e2s<+r) 
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in Euclidean quantum mechanics there is a set of corresponding stochastic equations 
(3), which will depend on the solutions of (10) being considered. One should note 
that just one of the possible Fokker-Planck equations, namely the one corresponding 
to the ground-state wavefunction exp[Zs(x)], admits a solution with a definite signal 
that can be interpreted as the density probability. Obviously 

Let us illustrate the above arguments with two examples from Euclidean problems: 

(a)  The hydrogen atom. The hydrogen atom ground-state wavefunction has the form 
Zo(r)  = exp(-2r)  = exp[Zs(r)]. Consequently, it follows that s(r) = -r. Substituting this 
expression into equation (13) one obtains V(r) = - ( 2 / r )  + 1. Then Bloch equation 
results 

az I J ~ Z  _- 

or, in terms of physical variables 

Hence, we see that the Coulomb potential -e2/r is automatically shifted upwards to 
the ground state level. 

(b) The harmonic oscillator. For the harmonic oscillator, the ground-state wavefunction 
has the form Z&) =exp(-ox2). In this case s(x) = -($)ox’ and the potential energy 
becomes V(x) = o x ’ - ( $ ) o .  Then Bloch equation results 

or, in physical variables, 

We observe in this case that the potential energy of the harmonic oscillator is shifted 
downwards, to the ground state level. 

The Langevine’s stochastic equation is written, for the hydrogen atom case, as 

(18) 
L 

,’. J +- r J  y = d .  J j = 1,2,3 

and, for the harmonic oscillator case, as 

xj + w+ = Qj j = 1,2,3.  

If one considers that both equations have the same stochastic source qbj, which 
carries all time-spatial characteristics of the system, then it is possible to transform 
from one system to the other as follows 

(20)  
5 + OXi = y j + 2 .  2Y. 

r 
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In this sense, the one-to-one correspondence of the paths X ( T )  and y(7) can be used. 
Solving (ZO), one obtains 

A A Beilinson and E P L e d  

(21) 
2 

x , ( ~ )  - x,(O) e--' =E(.) + 1' [; &(s) - wy,(r )] ds. 
0 

On the other hand, the transition probability corresponding to the stochastic 
equation (19) is 

Considering that the Fredholm denominator in equation (21) is D =  
exp[-$wt+jh ( l / r )  d ~ ]  the following expression is obtained for the transition proba- 
bility 

This is exactly the result that should be obtained by solving the system of stochastic 
equations when one uses the ground-state wavefunction of the hydrogen atom. 

Thus we conclude that each problem of the Euclidean quantum mechanics can be 
obtained from any other problem, with the same number of degrees of freedom, through 
a substitution of functional variables. It should be pointed out that equation (3)  provides 
the transition of a free particle (with coordinate q) to a particle in the potential field 
(10) with coordinate x. It should still be noted that the strong interrelation between 
the Brownian motion problems and those of quantum mechanics allows a simplified 
numerical solution of concrete quantum mechanics problems. Instead of solving 
Schr6dinger equations by traditional methods, a diffusion-type problem can be solved 
numerically in a considerably simpler manner with a further time-analytical extension 
of the obtained results. In other words, in Euclidean quantum mechanics (and, 
therefore, also in usual quantum mechanics) the quantum nature of the particles can 
be related, not with the particle itself, but with the stochastic spacetime background. 
As indicated above, the quantum phenomena are originated by this stochastic space- 
time background, whose essence is the time derivative of the Wiener process. In this 
sense, each quantum particle is investigated, exactly, in this background interaction. 

Let us recall the fundamenta1 two-electron interaction problem in the He atom. It 
is known that the results of the quantum theory for this atom agree very well with 
experimental data. Being standard quantum particles, the electrons in the He atom are 
not yet sensitive to a specific quantum interaction through this stochastic background 
interaction, common to all quantum particles. That is why it should be considered that 
this background interaction has no correlation effect for distances of the Bohr radius 
order of magnitude cm). 

It should be pointed out that the nature of the usual quantum regularities for many 
particles probably resides on the lack of correlation of the background interaction in 
the particle sites. It can be thought that different quantum particles may be found, for 
a relatively long time, at distances considered shorter than the Bohr dimensions. This 
is the case, for instance, of the particles inside the atomic nucleus. Because they are 
in very small regions of the spacetime background interaction, there will be a strong 
correlation among them. 
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Let us examine the limit case in which this correlation is absolute. That is, let us 
examine the case of stochastic equations of the type 

. as . x + - = q  
ax 

and 

In standard quantum mechanics, this case corresponds to the equations x + (as/ax) = 
and , ' + ( d R / 8 y ) = d 2 ,  where 4, and d2 are two different Wiener processes, as in 
equation ( 3 ) .  Equations (24) and (25) correspond to the same Wiener process ~ ( 7 ) .  

In order to simplify the problem, let us examine the case of two oscillators in the 
Euclidean quantum mechanics, located at the same point of the stochastic spacetime 
background 

X + W X = @  (26) 

and 

y +  qy = +. (27) 

Obviously, if the y coordinate is not considered (for instance, if it cannot be 
measured), then equation (27) disappears, leaving only (26), which is the equation 
that describes a harmonic oscillator in Euclidean quantum mechanics. This problem 
was considered previously. We are interested in defining the transition probability for 
the whole system (26) and (27), that is, for two harmonic oscillators, in the Euclidean 
formalism, located at the same point of the stochastic spacetime background. Besides 
the transition probapility, we are also interested in determining the form of the path 
integral for this problem. 

The solutions of the non-homogeneous equations (26) and (27) are, respectively: 

and 

y ( 7 )  = y o  e-"'= [2S(r-s)- q e-""-"]q(s) ds  (29) Ib 
that represents the conditions to be imposed on the linear functionals of P ( T ) ,  with 
the kernels 

a(7) =[28(7- s) - o exp[-o(r-s)ll 

and 

a'(7) = [2S(r-s)-7 exp[-q(~-s ) l ]  

respectively. In equations (28) and (29), ~ ( T ) = ~ ~ ~ S ( T - S ) ~ ( S )  ds  is the linear func- 
tional at the instant 7. The factor 2 is related to the integration limit (the integration 



1780 

variable s tends to the limit just by one side). Then, the probability density for these 
functionals is given by 

A A Beilinson and E P Leal 

WO, yo, 0; x, y ,  t )  

= S[(x-xo e-"') - {'[26(r - -s)  - w e-""-"']p,(s) ds] 
0 

x ( y  -yo e-"') - j' [2S(t - s) - 1) e-""-"]q(s) ds) dvfp(7). (30) E 0 

Writing the Fourier-transform of the 6-function and utilizing the Paley-Wiener 
formula for the linear functionals distribution, i.e. 

where B = I b [ J :  a(s) dsl'dr, it can be shown (Gelfand and Vilenkin 1961, Yanovitch 
1975) that: 

where 

Equation (31) above must represent a continuous bounded functional of continuous 
functions in C (Yanovitch 1975). 

So, a Gaussian distribution is obtained for the quantities x - xo e-"' and y -yo e-"', 
with the inverse matrix ajk. In the limiting case of equal frequencies o = 1) it turns out 
that W ( x o , y ~ . O ;  x,y,  t)=S[x-xo-(y-yo)], i.e. the processes X(T) andy(7) coincide 
thus leading to an absolute (kinematical) relationship in the considered example. 

In the following, the path integral for our problem will be obtained. Starting with 
the power-series expansion of (det qk):  

1 1 
I !  2! 

(det ajk)=(det ajk),=,+-(det ajk):=ot+-(det Qjk):=ot2+.. . 

(34) =&o- 1)) 2 4  f -12(w'+1)*) (w 1 + 1 ) ) f 5 + 9 ( f 6 )  
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as well as of the numerator of the exponent in (32): 

0 x - xo e-" y - yo e-n' 
1 -e-2" 1 -e-'"?'' 

2 0  ( w + v )  
x-xoe-"' - 

y - yo e-?' 
1 -e-(-+?)t 1 

(0 + n) 217 

[ (3+  WX) - ($+ ~ y ) ] t 3 - ~ [ ( X - ~ Z ~ )  - (j- n2y)]rS+ 9(t6) 

(X+OX)(.l - w )  = (X- w'x) -(j- $ y )  

(35) 
where the identity 

was used. Taking the limit f + 0 in the expression for W(xo, yo,  0; x, y, t )  yields 

w(xo,Yo,O;x,Y,t) - I-0 S { ( x + w x )  - (y + ill.)} exp{ -[(X-w'x) - (j- q'y)]'t). (36) 

From this result, the obtained expression for W(*, yo ,  0; x, y,  t )  in terms of the path 
integral is 

W(XO,YO, 0; X,Y, t )  

The main reason to rewrite W(xo, yo, 0; x, y, r )  in the form of equation (37) is that 
in this form the causal nature of transition probability density becomes clear since 
(32) defines a probabilistic measure corresponding to a cylindric set of finite-measure 
basis in the two-dimensional vector-function space {x(T), y (  T)}. This causality condition 
is verified through the Einstein-Smolukhovsky equation 

The result (37) reflects a non-trivial type of interrelation between the processes x 
and y through a unique stochastic background interaction. Probably such an interaction 
may play an imprtant role in the description of nucleons. 

The specific interaction of quantum particles considered here, which takes place 
whenever particles stay close ehough to one another for a sufficiently long time interval 
(a realization of such a situation probably being quarks confined into an atomic 
nucleus), can be illustrated by the interaction between two quantum oscillators with 
a potential energy 

v = lox'- $0 -k !$x' - 47 ( m  = fi  = 1). 

Conversely, in the usual quantum theory, these oscillators, in general, do not interact. 
Under the conditions assumed in this work, an interaction arises between the oscillators 
that is due to the stochastic spacetime background (see equation (32)). In this way, x 
and y are not to be considered as normal coordinates, thus leading to a shifting of 
their normal frequencies. 
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